If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+8x=155
We move all terms to the left:
7x^2+8x-(155)=0
a = 7; b = 8; c = -155;
Δ = b2-4ac
Δ = 82-4·7·(-155)
Δ = 4404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4404}=\sqrt{4*1101}=\sqrt{4}*\sqrt{1101}=2\sqrt{1101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{1101}}{2*7}=\frac{-8-2\sqrt{1101}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{1101}}{2*7}=\frac{-8+2\sqrt{1101}}{14} $
| H(t)=-t2+6t | | -9=-8+d/2 | | -2(8v-4)+8v=7(v=2) | | 3(+1)=5+x | | 4(x+2)=10x+1 | | (4x+5)∘+(2x+7)∘=16 | | 2x^2-16=4x | | x/9+10=9 | | -8(z-3)=-64 | | 39x+126=-3x^2 | | 30+17x=15 | | 9(m+6)=90 | | 2(2x+8)=2x-16+4x | | 40=−16t^2+70t+5. | | 4x^2+7+1=0 | | x+19+3x=122-3X-29 | | 18g-15-3g=5g+15 | | 6x-3-8x+5=24 | | 40x–5=10x+1 | | 4x+2–6x=–12 | | 5(v-4)-2=-4(-5v+5)-v | | 6n+10=14 | | 20y=-130 | | 3.4z+0.5=6 | | -15+m=8 | | 5/n=35/63 | | -93=3(1+4x) | | –8f=10−10f | | 3j+9=-9-6j | | -3(8+4x)=12 | | r/3-2=-4 | | x+x/5=1/2 |